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Abstract. We study the inlerFacial adsorption phenomena of the three-state ferromagnetic 
Pot& model on the simple cubic. lanice by the Monte Carlo method. Finite-size scaling 
analyses of the net adsorption yield evidence of the phase msition being of first order and 
kBTclJ = 1.8166(2). 

1. Introduction 

The Pons model is a multi-state statistical mechanical model for spin systems [1-3]. The 
Potts spin  variable^ takes a value of 1.2, . . . . and q. The Bragg-Williams approximation 
predicts that it exhibits a first-order phase transition for q > 2 [Z]. 

The properties of the two-dimensional models have been well understood: According to 
the duality argument, the transition temperature is known for all q exactly [1,2]. Baxter [4] 
proved the phase transition to be first order for q > 4 and second order for q Q 4. There 
is a conjecture for the thermal and magnetic exponents yt [5] and yh [6,7] for q Q 4. 

There is no exact result in three dimensions [3]. There is a problem whether the order 
of the transition of the three-dimensional three-state Pous model is first order or not. It has 
been studied by many authors and the result is that it has a weak first-order phase . .  transition 
[8-18]. The transition is characterized by a small jump in the energy; 

The specific heat has a singularity of the delta function type as a result of the 
discontinuity ,of the energy at first-order phase transitions. The behaviour can be seen 
only in systems with infinite lattice size. In systems with finite lattice size the singularity 
of the energy is smoothed out and that of the specific  heat is rounded off. The finite-size 
scaling theory can predict the behaviour of infinite systems through information about finite 
systems [IP-211. 

The Monte Carlo method is a useful tool with which to investigate phase transitions 
and critical phenomena 122.231. Monte Carlo simulations are necessarily carried out on 
systems with finite lattice size. With the help of the finite-size scaling theory we can study 
the thermodynamic behaviour of various physical systems. 

The specific heat of the system with linear size L has a maximum C,,,=(L) at a 
temperature T , ( L ) .  The .finite-size effects are govemed by the dimensions d at first-order 
phase transitions [2+26]: 
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and 

&(L) - Tc - L-d 

c,, (L) - L+ 

and by the critical exponents a and U at second-order transitions [19-211: 

and 

The difference in power has been used to determine the nature of the transitions [161. 
As was described above, the five-state Potts model on the square lattice undergoes a 

first-order phase transition. Peczak and Landau [27] studied the system using the Monte 
Carlo method. They found that it behaved as if the transition were second order, i.e. the 
physical quantities showed pseudocritical behaviour, e.g. C,,,=(L) - L'.09 rather than L2. 
Thus it is dimcult to recognize the order of the transition. Yamagata and Kasono [28], 
however, found first-order finite-size effects in interfacial adsorption phenomena [29,301 of 
the system by the Monte Carlo method. 

The aim of this paper is to identify the transition of the three-state ferromagnetic Potts 
model on the simple cubic lattice and to determine the transition temperature by analysing 
the finitesize effects in interfacial adsorption phenomena with the Monte Carlo method. 
The phenomena in three dimensions are studied for the first time. In the next section we 
describe the interfacial adsorption phenomena and then discuss the finite-size scaling theory 
for them in section 3. We present the detail of our Monte Carlo simulations in section 4. 
In section 5 we analyse the Monte Carlo data. A summary is given in section 6. 

2. Interfacial adsorption phenomena 

Interfacial adsorption phenomena [29,30] have been observed in the following multi-state 
models: the Potts models [28,31-331, the Blume-Capel model [34,35], and the c h l  clock 
model [36,37]. We shall explore them for the Potts models. 

Let us consider the q-state ferromagnetic Potts model on the Ld-' x (L+2) hypercubic 
lattice. In the dth direction the fixed boundary conditions are taken and periodic boundary 
conditions are used in the remaining directions. We fix the Potu spin variables in two states 
1 and m, which takes the value of 1 or 2, at the opposite boundaries in the dth dimition, 
respectively. The Hamiltonian is given by 

where 8 is Kronecker's delta function, J(z 0) is the strength of interactions, the summation 
for (i, j )  is over all nearest-neighbour pairs, except those which involve the fixed spins, 
on the lattice, Cl and denote the summations over lattice sites which adjoin opposite 
boundaries in the dth direction, respectively. 

In the system 'H(lp, at a very low temperature an interface can appear between two 
phases (called the (1 12) interface). It has been found that the remaining states 3,4, . . . , and 
q (called the non-boundary states) are generated in the form of droplets at the interface near 
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the transition temperature TC 131,321. The interfacial adsorption phenomena are described 
by the net adsorption defined [31,32] as 

where (. . .),llz, and (. . . ) , i l l)  denote the thermal or Monte Carlo averages for the systems 
'M(11~) and 'M{I,I), respectively: the summation for i is over all lattice sites except those 
where the fixed Potts spin variables are located. One should note that the summation for n 
is over the non-boundary states. The results of Monte Carlo simulations show that W L ( T )  
has a'finite peak near TC on the finite system [31]. 

3. Finite-size scaling theory 

Yamagata and Kasono [28] have discussed the finite-size effects [32,33] of the net 
adsorption. Noting the relation between W L ( T )  and the interfacial free energy, they have 
shown that 

WL(T) % LQ(2Ld) (3) 

and 

WL(T) x L'-d+Y"(tL") (4) 

at first- and second-order phase transitions, respectively, where R is a scaling function, 
t = 1 - T /  Tc, and yt and yh are the thermal and magnetic exponents, respectively [3,5-71. 
We omit the correction terms for simplicity here. In two dimensions the finite-size scaling 
(3) and (4) of WL(T)  has been confirmed by the Monte Carlo method [28,32,33]. One 
should note in (3) that WL(Tc) is proportional to L at first-order phase transitions regardless 
of the dimensions d. 

Yamagata and Kasono [28] have studied the finite-size effects of W'(Tc) to identify 
the. order of transitions. They found, using the Monte Carlo method that WL(TC) was 
proportional to L on the two-dimensional five-state Potts model. It is clear evidence that 
the transition of the system is first order. As was described in section 1, the finite-size effect 
of the specific heat of the system was not seen to be first order. It is important to choose 
physical quantities to be analysed. 

We shall study the finite-size effects of the net adsorption of the three-dimensional three- 
state Potts model on the same lines. However, we do not know the value of the transition 
temperature of the system exactly [3]. We note that W~(T)~has  a maximum W , ( L )  at a 
temperature Tza(L) on the system with linear size L. Thus the scaling function D(x) does 
so. Let xmar be a location of the maximum of R(x) [38]. xmax satisfies an equation 

We consider the case of first-order phase transitions (3) hereafter. Since it is clear that 
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we obtain a relation 

T,W,(L) = T~ - T ~ ~ , - L - ~ .  

Since xmar is independent of T and L, Wma(L) grows with L: 

We may expect to estimate the transition temperature and to identify the nature of the 
transition by analysing the finite-size effects of the net adsorption obtained by the Monte 
Carlo simulations. 

4. Monte Carlo simulations 

We use the Metropolis algorithm [22,23] to simulate the systems ‘7i(lp, and X(l11, given 
by ( I )  with q = 3 on L2 x (L + 2) simple cubic lattice ( L  = 10, 12, 14, 16, 18, 20, 24 
and 30). The net adsorption is calculated with (2) of d = q = 3. We start ‘each simulation 
from a high temperature with a random configuration and then gradually cool the system. 
The pseudorandom numbers are generated by the Tausworthe method [39]. Measurements 
at a temperature are over 105 Monte Carlo steps per spin (MCS/Spin) after discarding lo4 
MCS/Spin to attain equilibrium. Near T&(L) we observe the physical quantities over lo6 
Mcs/spin after 5 x 104 MCS/spin for the systems with L = 14, 16, 18, 20, 24 and 30. 
We have checked that simulations from the ground-state configuration and a random one 
gave consistent results and there was no hysteresis. We use. the coarse-graining scheme to 
calculate the statistical errors [40]. Each run is divided into ten blocks and the standard 
deviations are obtained from the ten subaverages. 

As was described in the previous section, we want to estimate the maximum of the net 
adsorption and its position for each lattice size. Since it is difficult to get them from raw 
Monte Carlo data, we decide to adopt the procedure B-spline smoothing [39]. We fit our 
Monte Carlo data by the fourth-order B-spline. 

5. Monte Carlo results 

From now on, for brevity, the physical quantities are presented in units ks = 1 = J. 
Figure 1 shows the temperature dependence of the net adsorption WL(T) defined by 

(2) with d = q = 3 for various lattice sizes. The net adsorption has a finite peak. 
We plot W,,,,(L) against L in figure 2. It is clear that Wma(L) is proportional to L. 
It is consistent with prediction (6) from the finite-size scaling theory. By using linear 
regression from the data Wma(L) with L = 18, 20, 24 and 30 we obtain a relation: 
W,,(L) = 0.092(4) + O.O382(2)L. In figure 3, TJa(L) is shown for the function of 
L-3. For systems with large lattice size it agrees well with (5). We estimate TC to be 
1.8166 f 0.0002 by using linear regression from the data T&(L) with L = 18,20,24 and 
30; TE,(L) = 1.8166(2) -41(2)Lm3. The value should be compared with previous results 
(see table I). 
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1 1.4 1 

0.2 1 
0.0 I 

1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 
T 

Fwre 1. The temperature dependence of the net adsorption of the three-state Pot& model On 
the simple cubic lattice with L = 10,12,14,16, 18.20.24 and 30. The full curves are obtained 
by B-spline smoothing. As L increases, the shape of the curve becomes sharper. 

0 5 10 15 20 25 30 35 40 
L 

Figure 2. The size dependence of the maximum of 
the net adsorpion of, the thxestate Potts model on 
the simple cubic lattice. The full line shows 0.092 + 
0.0382L. Errors are less than symbol size; 

6. Summary 

We studied the interfacial adsorption phenomena of the three-state ferromagnetic Potts model 
on a simple cubic lattice. The net adsorption was calculated by the Monte Carlo method. 
The finite-size effects were consistent with predictions (5) and (6) from the finite-size scaling 
theory for systems with L > 18. There is clear evidence that the phase transition is first 
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1.820 

Figure 3. The size dependence of the location of 
the net adsorption maximum of the three-state Potts 

0.0005 I O.Oo10 model on the simple cubic lattice. The full line shows 
1.8166 - 41LM3. 

1.815 

1,810 

Ti! 1.805 

1.800 

1.7% 

1 1 ~ 3  

Table 1. The vansition temperature of the threeitate Pons model on the simple cubic lattice in 
units kB = I = J .  

Tc 
i.8166(2) 
1.816454(32) 
1.8164(1) 
1.8161(1) 
1.81624!6) .. 
1.81 
1.8 169(6) .. 
1.818(3) 
1.818 
1.827(1) 
1.787(5) 

Author(s) 

This work 
Alves er nl 1991 [la] 
FukugiIa er nl 1990 [161 
Gavai et nl 1989 [151 
Wilson and Vause 1987 [14] 
Ono and Ito 1982 [I31 
Knak Jensen and Mouritsen 1979 [I21 
Hemnann 1979 [Ill  
BlBte and Swendsen 1979 [lo] 
Miyashila er al 1979 [9] 
Kim ind JoneDh 1975 181 

order. The transition temperature was estimated to be 1.8166(2). It is consistent with recent 
results [16,18]. 

The net adsorption attains to the asymptotic region for L 2 18. The specific heat, on 
the other hand, shows asymptotic behaviour for L > 30 [16]. We succeeded in identifying 
the phase transition and obtaining the transition temperature from the data with L < 30 
since we investigated the net adsorption. Generally we can~obtain good statistics for small 
systems on Monte Carlo simulations; however it takes much computer time to simulate 
large systems. Thus we need to select the observational quantity carefully. 
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